## Federal Aviation Administration, DOT water at 80 degrees F. and having 0.75cc of free water per gallon added and cooled to the most critical condition for icing likely to be encountered in operation. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–10, 39 FR 35462, Oct. 1, 1974; Amdt. 29–12, 41 FR 55473, Dec. 20, 1976] #### § 29.952 Fuel system crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard of fuel fires to occupants following an otherwise survivable impact (crash landing), the fuel systems must incorporate the design features of this section. These systems must be shown to be capable of sustaining the static and dynamic deceleration loads of this section, considered as ultimate loads acting alone, measured at the system component's center of gravity without structural damage to the system components, fuel tanks, or their attachments that would leak fuel to an ignition source. - (a) *Drop test requirements*. Each tank, or the most critical tank, must be drop-tested as follows: - (1) The drop height must be at least 50 feet. - (2) The drop impact surface must be nondeforming. - (3) The tanks must be filled with water to 80 percent of the normal, full capacity. - (4) The tank must be enclosed in a surrounding structure representative of the installation unless it can be established that the surrounding structure is free of projections or other design features likely to contribute to upture of the tank. - (5) The tank must drop freely and impact in a horizontal position $\pm 10^{\circ}$ . - (6) After the drop test, there must be no leakage. - (b) Fuel tank load factors. Except for fuel tanks located so that tank rupture with fuel release to either significant ignition sources, such as engines, heaters, and auxiliary power units, or occupants is extremely remote, each fuel tank must be designed and installed to retain its contents under the following ultimate inertial load factors, acting alone. - (1) For fuel tanks in the cabin: - (i) Upward—4g. - (ii) Forward—16g. - (iii) Sideward-8g. - (iv) Downward—20g. - (2) For fuel tanks located above or behind the crew or passenger compartment that, if loosened, could injure an occupant in an emergency landing: - (i) Upward—1.5g. - (ii) Forward—8g. - (iii) Sideward—2g. - (iv) Downward—4g. - (3) For fuel tanks in other areas: - (i) Upward—1.5g. - (ii) Forward-4g. - (iii) Sideward—2g. - (iv) Downward—4g. - (c) Fuel line self-sealing breakaway couplings. Self-sealing breakaway couplings must be installed unless hazardous relative motion of fuel system components to each other or to local rotorcraft structure is demonstrated to be extremely improbable or unless other means are provided. The couplings or equivalent devices must be installed at all fuel tank-to-fuel line connections, tank-to-tank interconnects, and at other points in the fuel system where local structural deformation could lead to the release of fuel. - (1) The design and construction of self-sealing breakaway couplings must incorporate the following design features: - (i) The load necessary to separate a breakaway coupling must be between 25 to 50 percent of the minimum ultimate failure load (ultimate strength) of the weakest component in the fluid-carrying line. The separation load must in no case be less than 300 pounds, regardless of the size of the fluid line. - (ii) A breakaway coupling must separate whenever its ultimate load (as defined in paragraph (c)(1)(i) of this section) is applied in the failure modes most likely to occur. - (iii) All breakaway couplings must incorporate design provisions to visually ascertain that the coupling is locked together (leak-free) and is open during normal installation and service. - (iv) All breakaway couplings must incorporate design provisions to prevent uncoupling or unintended closing due to operational shocks, vibrations, or accelerations. - (v) No breakaway coupling design may allow the release of fuel once the # § 29.953 coupling has performed its intended function. - (2) All individual breakaway couplings, coupling fuel feed systems, or equivalent means must be designed, tested, installed, and maintained so inadvertent fuel shutoff in flight is improbable in accordance with §29.955(a) and must comply with the fatigue evaluation requirements of §29.571 without leaking. - (3) Alternate, equivalent means to the use of breakaway couplings must not create a survivable impact-induced load on the fuel line to which it is installed greater than 25 to 50 percent of the ultimate load (strength) of the weakest component in the line and must comply with the fatigue requirements of § 29.571 without leaking. - (d) Frangible or deformable structural attachments. Unless hazardous relative motion of fuel tanks and fuel system components to local rotorcraft structure is demonstrated to be extremely improbable in an otherwise survivable impact, frangible or locally deformable attachments of fuel tanks and fuel system components to local rotorcraft structure must be used. The attachment of fuel tanks and fuel system components to local rotorcraft structure, whether frangible or locally deformable, must be designed such that its separation or relative local deformation will occur without rupture or local tear-out of the fuel tank or fuel system component that will cause fuel leakage. The ultimate strength of frangible or deformable attachments must be as follows: - (1) The load required to separate a frangible attachment from its support structure, or deform a locally deformable attachment relative to its support structure, must be between 25 and 50 percent of the minimum ultimate load (ultimate strength) of the weakest component in the attached system. In no case may the load be less than 300 pounds. - (2) A frangible or locally deformable attachment must separate or locally deform as intended whenever its ultimate load (as defined in paragraph (d)(1) of this section) is applied in the modes most likely to occur. - (3) All frangible or locally deformable attachments must comply with the fatigue requirements of § 29.571. - (e) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far as practicable from all occupiable areas and from all potential ignition sources. - (f) Other basic mechanical design criteria. Fuel tanks, fuel lines, electrical wires, and electrical devices must be designed, constructed, and installed, as far as practicable, to be crash resistant. - (g) Rigid or semirigid fuel tanks. Rigid or semirigid fuel tank or bladder walls must be impact and tear resistant. [Doc. No. 26352, 59 FR 50387, Oct. 3, 1994] ### § 29.953 Fuel system independence. - (a) For category A rotorcraft— - (1) The fuel system must meet the requirements of § 29.903(b); and - (2) Unless other provisions are made to meet paragraph (a)(1) of this section, the fuel system must allow fuel to be supplied to each engine through a system independent of those parts of each system supplying fuel to other engines. - (b) Each fuel system for a multiengine category B rotorcraft must meet the requirements of paragraph (a)(2) of this section. However, separate fuel tanks need not be provided for each engine. # § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— - (a) Direct lightning strikes to areas having a high probability of stroke attachment; - (b) Swept lightning strokes to areas where swept strokes are highly probable; and - (c) Corona and streamering at fuel vent outlets. [Amdt. 29-26, 53 FR 34217, Sept. 2, 1988] # § 29.955 Fuel flow. (a) *General*. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all operating and maneuvering conditions to be approved for the rotorcraft, including, as applicable, the fuel